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Motivation
In many application areas, one encounters a function f which is
difficult or expensive to evaluate, for example the output of a
sophisticated computer simulation.
One desires an approximation of f that is easier to evaluate than f
itself, i.e., an interpolant.
A popular way of constructing these surrogate functions is to use
positive definite kernels.
The choice of which kernel to use has a significant effect on the
accuracy of the resulting approximation.
So, we’d like a systematic way of choosing the most suitable kernel
for the particular application.

Introduction
We study a 2-parameter family of compact Matérn kernels
arising as Green’s functions associated with differential
equations of the form
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Kβ,ε(x , y) = δ(x − y), (1)

subject to the boundary conditions
Kβ,ε(0, y) = K ′′β,ε(0, y) = · · · = K 2(β−1)

β,ε (0, y) = 0
Kβ,ε(L, y) = K ′′β,ε(L, y) = · · · = K 2(β−1)

β,ε (L, y) = 0,
(2)

where δ is the Dirac delta function and [0,L]× [0,L] is the domain
on which our kernel is defined.
Current kernel methods optimize ε, the “shape” parameter.

Figure: Relative RMS error as ε varies, using kernels with β = 8. Note that
there is a nonzero value of ε that minimizes error.

By introducing the new parameter β, the number of iterations of
the differential operator

− d2

dx2 + ε2 Id
, we can force the kernel Kβ,ε

to be continuously differentiable up to the (2β − 2)th derivative. In
this sense β is a smoothness parameter.
Closed forms of these kernels are known when ε = 0.
In that special case, we recover certain piecewise polynomial
splines, which are well-understood and can be expressed as

Kβ,0(x , y) = (2L)2β−1

(2β)!
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with Bernoulli polynomials B2β.

Closed Forms when ε > 0 via Green’s functions
A Green’s function is a type of function used to solve differential equations subject
to boundary conditions.
The kernels in this family are continuously differentiable up to the (2β − 2)th

derivative, and have a jump of 1 in the (2β − 1)th derivative along the line y = x
due to the Dirac delta function on the RHS of (1).
We split the domain [0,L]× [0,L] along the interface x = y and find the Green’s
function on either side.
We force the two sides to agree along the interface with “gluing” conditions.
With the boundary conditions in equation (2) and these interface conditions, a
Green’s function is uniquely determined.
The Green’s function for the original boundary value problem is then given by the
piecewise union of those of each half of the domain.
This domain-splitting approach sidesteps the difficulty of the discontinuity in the
(2β − 1)th derivative.

(a) ε = 1 (b) ε = 7
Figure: Surface plot of K2,ε. β = 2, ε > 0, L = 1. Note the interface x = y in black, and the effect
of the shape parameter.

Convergence Behavior
We perform numerical experiments to investigate how fast the interpolant converges
to the target function as N , the number of data points, increases.
Here we assume that the error in the interpolant is proportional to N−p (we refer to
the exponent p as the order of convergence).
If the function to be approximated satisfies the boundary conditions in (2) for all
even derivatives up to order 2n, then we observe that the rate of convergence seems
to be p = 2β and it increases with β until β > n + 1, after which the rate of
convergence remains constant:

β p
1 1.93
2 4.11
3 6.21
4 6.24
5 6.24

(a) Convergence orders (b) Error as N increases for different values of β
Figure: The target function f (x) = x7(x − 1)8 satisfies the left boundary conditions for all even
derivatives up to the 6th, and those on the right for all even derivatives up to the 8th. Note how the
rate of convergence increases as β increases until a boundary condition is violated. This occurs even if
only one of the boundary conditions is not satisfied, and even when higher-order boundary conditions
are satisfied.

Existence of Optimal β
The smoothness parameter is only useful if there is an optimal value
between 1 and∞. Numerical evidence below seems to indicate that this
is the case, though there is still work to be done.
When β

2 is greater than the target function’s highest-order even
derivative that satisfies the boundary conditions, most of the error is
concentrated at the boundary.
As β increases, the error at the boundary spreads toward the interior,
while the interior enjoys better and better accuracy (until the influence
of the boundary overtakes this improvement):

Figure: Error profiles over the interval [0, 1] for increasing β, with target function
f (x) = ex − (1− x)− ex . This function satisfies the boundary conditions only for β = 1.
Note how error begins spreading towards the interior when β = 2, yet error continues to
decrease in the interior. The interplay between these two phenomena indicates that
there is an optimal choice of β, at least for a subregion of the domain.

Figure: RMS error for interior and boundary regions. When we consider the interior of
the interval separately from the boundaries, we observe that there is an optimal β.

Conclusions
The degree to which the target function and its derivatives satisfy the
boundary conditions has a significant influence on the convergence
behavior of the interpolant as the kernels become smoother.
Accuracy can be gained in a region of the domain by optimizing β for
that region. This justifies the introduction of the smoothness parameter.
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